Chemically active substitutional nitrogen impurity in carbon nanotubes.
نویسندگان
چکیده
We investigate the nitrogen substitutional impurity in semiconducting zigzag and metallic armchair single-wall carbon nanotubes using ab initio density functional theory. At low concentrations (less than 1 at. %), the defect state in a semiconducting tube becomes spatially localized and develops a flat energy level in the band gap. Such a localized state makes the impurity site chemically and electronically active. We find that if two neighboring tubes have their impurities facing one another, an intertube covalent bond forms. This finding opens an intriguing possibility for tunnel junctions, as well as the functionalization of suitably doped carbon nanotubes by selectively forming chemical bonds with ligands at the impurity site. If the intertube bond density is high enough, a highly packed bundle of interlinked single-wall nanotubes can form.
منابع مشابه
Doping and the unique role of vacancies in promoting the magnetic ground state in carbon nanotubes and C60 polymers
The role of various types of defects in establishing the magnetic properties of the C60-based polymers and the single-wall carbon nanotubes is investigated. Comparing the role of carbon vacancies, and that of substitutional impurity atoms X X=N, B, O, Si, P, and S in establishing a magnetic ground state it is found that the impurity X atoms promote the spin density delocalization, whereas its l...
متن کاملAb Initio Electrochemistry: Exploring the Hydrogen Evolution Reaction on Carbon Nanotubes
Density functional theory (DFT) was employed to investigate the hydrogen evolution reaction (HER) on pristine and nitrogen doped carbon nanotubes (CNTs) in acidic solution. As the reaction is an electrocatalytic surface reaction, an accurate description of HER requires performing simulations under constant electrode potential conditions. To this end, we examined HER at several electrode charges...
متن کاملTheoretical Calculations of the Effect of Finite Length on the Structural Properties of Pristine and Nitrogen-doped Carbon Nanotubes
The effect of impurities on quantum chemical parameters of single-walled nanotubes (SWNTs) was studied using density functional theory (DFT). The density of states (DOS), Fermi energy and thermodynamic energies of (5,5) carbon nanotubes were calculated in the presence of nitrogen impurity. It was found that this nanotube remains metallic after being doped with one nitrogen atom. The partial den...
متن کاملLinkage of doxycycline onto functionalized multi-walled carbon nanotube and morphological characterization
In this paper functionalized multiwall carbon nanotubes (FMWCNT) were modified using doxycycline, containing reactable nitrogen, which can attach chemically to functionalized MWCNT. The synthesized nano compounds were characterized by Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. These spectrums proved the existence of nitrogen atoms of amide functional groups. The mor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 91 10 شماره
صفحات -
تاریخ انتشار 2003